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Abstract

This paper presents simple tools for the vibration and stability analysis of cracked hollow-sectional
beams. It comprises two parts. In the first, the influences of sectional cracks are expressed in terms of
flexibility induced. Each crack is assigned with a local flexibility coefficient, which is derived by virtue of
theories of fracture mechanics. The flexibility coefficient is a function of the depth of a crack. The general
formulae are derived and expressed in integral form. It is then transformed to explicit form through 128-
point Gauss quadrature. According to the depth of the crack, the formulae are derived under two scenarios.
The first is for shallow cracks, of which the penetration depth is contained within the top solid-sectional
region. The second is for deeper penetration, in which the crack goes into the middle hollow-sectional
region. The explicit formulae are best-fitted equations generated by the least-squares method. The best-
fitted curves are presented. From the curves, the flexibility coefficients can be read out easily, while the
explicit expressions facilitate easy implementation in computer analysis. In the second part, the flexibility
coefficients are employed in the vibration and stability analysis of hollow-sectional beams. The cracked
beam is treated as an assembly of sub-segments linked up by rotational springs. Division of segments are
made coincident with the location of cracks or any abrupt change of sectional property. The crack’s
flexibility coefficient then serves as that of the rotational spring. Application of the Hamilton’s principle
leads to the governing equations, which are subsequently solved through employment of a simple
technique. It is a kind of modified Fourier series, which is able to represent any order of continuity of the
vibration/buckling modes. Illustrative numerical examples are included.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic behaviour of a cracked beam is of significant importance in engineering. It
attracts the attention of many researchers. Dimarogonas [1] presented the state-of-art review of
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various methods in tackling a cracked structural member. Till now, many publications have
reported on this subject. Amongst the many easily accessible ones some notable ones are Refs.
[2–23], etc. They all dealt with cracked beams/plates having solid rectangular or circular cross-
sections. However, in many practical applications, in particular in bridge engineering, structural
members have other forms of cross-sections such as rectangular/trapezoidal hollow sections or
multi-cellular hollow sections. Against this background, this paper focuses on the vibration
analyses of beams having hollow cross-sections.
Firstly, by virtue of the theory of fracture mechanics, general integral formulae are derived for

the equivalent flexibility coefficients of a local crack. The integral form is hard to use. For
practical purpose, it is then transformed to explicit form through employment of 128-point Gauss
quadrature. The explicit formulae are best-fitted equations generated by the least-squares method.
The best-fitted curves are also presented. From the curves, the flexibility coefficients can be read
out easily, while the explicit expressions facilitate easy implementation in computer analysis.
The flexibility coefficients are then employed in the vibration and stability analysis of hollow-

sectional beams. The cracked beam is firstly divided into sub-segments, which are linked up by
hinges and rotational springs. Division of segments are made coincident with the location of
cracks or any abrupt change of sectional property. The crack’s flexibility coefficient then serves as
that of the rotational spring. In this paper, it is assumed that the cracks are always open and the
beam is in the range of linear elasticity. Applying Hamilton’s principle to the model leads to the
governing equations, which are subsequently solved through employment of a simple technique
[20,21]. It is a kind of modified Fourier series, which is able to represent a function with internal
geometrical discontinuity, and hence it emerges to be a convenient tool to represent the vibration/
buckling modes having any order of continuity. Subsequently, illustrative numerical examples are
given.

2. Local flexibility due to a crack in solid rectangular-sectional beam

Let a denote the penetration depth of a sectional crack (Fig. 1) in a rectangular section of depth
h and width b; M be a virtual twin couple (moment) applied across the crack location and y be the
relative rotation of that cracked section, we have [24]

y ¼
@

@M

Z
Ac

G dA

� �
¼

@

@M

Z a

0

Z b=2

�b=2
G dZ dx

" #
; ð1Þ

where x and Z are location variables. x is measured along the depth direction of the sectional
crack, Z is the distance offset from the central vertical axis. Ac ð¼ a�bÞ is the surface area of the
open crack, and G is a measure of the energy-release rate. In general, G is a function of the applied
couple M and the location variables x ð0pxpaÞ and Z: In this particular case, the sectional crack
is a constant through-width crack. Therefore, G is independent of the width variable Z; and hence
the equation becomes

y ¼
@

@M

Z
Ac

G dA

� �
¼

@

@M

Z a

0

bG dx
� �

: ð1aÞ
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The energy-release rate G over a small area ðdx�dZÞ can be related to the stress intensity factor KI

as follows [3]:

G dx dZ ¼
K2

I

E0 dx dZ; ð2Þ

where E0 is Young’s modulus. For plane-stress problem, E0 ¼ E: For plane-strain problem, E0 ¼
E=ð1� m2Þ; in which m is the Poisson ratio.
The presence of the crack induces local flexibility to the beam. The local flexibility coefficient C

can be expressed as follows:

C ¼
@y
@M

¼
@2

@M2

Z a

0

bG dx
� �

: ð3Þ

The stress intensity factor KI in the near region of a crack tip can be expressed as [25]

KI ¼
Mh

2I0

ffiffiffiffiffiffi
px

p
F ; ð4Þ

where I0 ð¼ bh3=12Þ is the second moment of the sectional area, and F is a function of the relative
position x ð¼ x=hÞ; i.e.,

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=px tan px=2

p
½0:923þ 0:199ð1� sin px=2Þ4	
cos px=2

: ð5Þ

Substituting Eq. (4) into Eq. (2) and subsequently the result into Eq. (3) leads to

C ¼
72p

E0bh2

Z a=h

0

xF2 dx; ð6aÞ

In dimensionless form,

CE0bh2 ¼ 72p
Z a=h

0

xF2 dx: ð6bÞ

Eqs. (6a) and (6b) are the general integral form of the local flexibility induced by a sectional crack.
Explicit form can be obtained through employment of Gauss quadrature [26,27]. Firstly,
approximate values are obtained by 128-point quadrature. Then, applying the least-squares
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Fig. 1. A sectional crack in a solid rectangular-sectional beam.
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method yields the best-fitted explicit expression as given in Eq. (A.1). Both the fitted curve and the
Gauss-point values are plotted in Fig. 2. The curve is fitted so nicely that they are hardly
distinguishable.

3. Local flexibility due to a sectional crack in solid circular-sectional beam

Let a denote the penetration depth of a sectional crack (see Fig. 3) in a circular section of
diameter D (or radius R); M be a virtual twin couple (moment) applied across the crack location
and y be the relative rotation of that cracked section, we have a similar relation as Eq. (1) between
y and the energy-release rate G:

y ¼
@

@M

Z
Ac

G dA

� �
¼

@

@M

Z a

0

Z b0

�b0
G dZ dx

" #
; ð7Þ

where x and Z denote the same geometrical variables as in Eq. (1), but in this case, the surface area
Ac of the open crack is a segment of a round circle and the width of the section is no longer
constant. The parameter b0 denotes the half-width of a horizontal section measured at a depth x: It
has a geometric relation with the depth variable x; i.e.,

b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðR � xÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
�

D

2
� x

	 
2s
: ð8Þ

Note that in this case, the energy-release rate G is a function of M; the depth variable xð0pxpaÞ
and the width variable Z as well. Eq. (2) for the relation between energy-release rate G and stress
intensity factor KI holds. Hence, substituting Eq. (2) into Eq. (7) leads to

y ¼
@

@M

Z a

0

Z b0

�b0

K2
I

E0 dZ dx

" #
: ð9Þ
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Fig. 2. Dimensionless local flexibility versus relative depth of a crack in a solid rectangular-sectional beam.
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The local flexibility coefficient C can then be expressed as follows:

C ¼
@y
@M

¼
@2

@M2

Z a

0

Z b0

�b0

K2
I

E0 dZ dx

( )
: ð10Þ

Consider a small vertical sectional strip, having a small sectional width dZ and a depth h0; at an
arbitrary offset distance Z (see Fig. 3). The stress intensity factor has a similar expression as
Eq. (4) [25] as follows:

KI ¼
Mh0

2I0

ffiffiffiffiffiffiffi
px0

p
F 0; ð11Þ

where I0 ð¼ pD4=64Þ is the second moment of the whole sectional area, x0 is a local depth variable
measured from the top of that strip, and F 0 is a function of the local relative position x0 ð¼ x0=h0Þ;
i.e.,

F 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=px0 tan px0=2

p
½0:923þ 0:199ð1� sin px0=2Þ4	
cos px0=2

; ð12Þ

in which h0 and x0 have geometric relation with the offset distance Z and global depth variable x;
i.e.,

h0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Z2

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
� Z2

s
; ð13Þ

x0 ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Z2

p
� R ¼ xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

4
� Z2

s
�

D

2
: ð14Þ
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Fig. 3. A sectional crack in a solid circular-sectional beam.
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Substituting Eq. (11) into Eq. (10) leads to

CE0D3 ¼
2048

p

Z a

0

Z b0

�b0
½1� 4ðZ=DÞ2	ðx0=DÞF 02ðdZ=DÞðdx=DÞ: ð15Þ

Letting x ¼ x=D and y ¼ Z=D; we have

CE0D3 ¼
1024

p

Z a=D

0

Z ffiffiffiffiffiffiffiffi
x�x2

p
�

ffiffiffiffiffiffiffiffi
x�x2

p ð1� 4y2Þð2x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y2

p
� 1ÞF 02 dy

8<
:

9=
; dx; ð16Þ

where F 0 is a function of x0 expressed in terms of x and y as follows:

x0 ¼
x0

h0
¼
2x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y2

p
� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y2

p : ð17Þ

Eq. (16) is the general integral form of the local flexibility induced by a sectional crack. Explicit
form can be obtained through employment of Gauss quadrature. Firstly, approximate values are
obtained by 128� 128 quadrature. Then, applying the least-squares method yields the best-fitted
explicit expressions as shown in Eqs. (A.2). The best-fitted curve is shown in Fig. 4. Values given
by Dimarogonas et al. [3] are also plotted in Fig. 4. Excellent agreement is observed.

4. Local flexibility due to a sectional crack in circular-hollow-sectional beams

4.1. Case 1—shallow open crack ½0papðDe � DiÞ=2	

Fig. 5 shows the shallow open crack, of which the penetration depth ‘a’ is contained within the
top solid-sectional region ½0papðDe � DiÞ=2	: De is the external diameter and Di is the internal
diameter. Following the same procedures in deriving the equations for solid circular section, we
have a similar expression for the relation between the relative rotation y and the stress intensity
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Fig. 4. Dimensionless local flexibility versus relative depth of a crack in a solid circular-sectional beam.
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factor KI as follows:

y ¼
@

@M

Z a

0

Z be

�be

K2
I

E0 dZ dx
� �

; ð18Þ

where be denotes the half-width of a horizontal section measured at a depth x: It has a geometric
relation with the depth variable x; i.e.,

be ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

e

4
�

De

2
� x

	 
2s
ð19Þ

and the stress intensity factor KI has a similar expression as Eq. (11) as follows:

KI ¼
Mh0

2 #I0

ffiffiffiffiffiffiffi
px0

p
F 0; ð20Þ

in which #I0 ½¼ pðD4
e � D4

i Þ=64	 is the second moment of the whole sectional area.
Substituting Eq. (20) into Eq. (18) and then the result into the definition equation for the local

flexibility, i.e., C ¼ @y=@M; we can obtain

CE0D3
e ¼

2048

pð1� g4Þ2

Z a

0

Z be

�be

½1� 4ðZ=DeÞ
2	ðx0=DeÞF 02ðdZ=DeÞðdx=DeÞ; ð21Þ

where g ¼ Di=De: Letting x ¼ x=De and y ¼ Z=De; we have

CE0D3
e ¼

1024

pð1� g4Þ2

Z a=De

0

Z ffiffiffiffiffiffiffiffi
x�x2

p
�

ffiffiffiffiffiffiffiffi
x�x2

p ð1� 4y2Þð2x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y2

p
� 1ÞF 02 dy

8<
:

9=
; dx; ð22Þ

where F 0 is a function of x0 (Eq. (12)), and x0 is expressed in terms of x and y exactly as Eq. (17)
above.
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4.2. Case 2—deeper open crack ½ðDe � DiÞ=2papðDe þ DiÞ=2	

Fig. 6 shows the deeper open crack, of which the penetration depth ‘a’ goes into the middle
hollow-sectional region ½ðDe � DiÞ=2papðDe þ DiÞ=2	: Following the same procedures above, we
have a similar expression for the relation between the relative rotation y and the stress intensity
factor KI as follows:

y ¼
@

@M

Z t

0

Z be

�be

K2
I

E0 dZ dxþ
Z a

t

Z �bi

�be

K2
I

E0 dZ dxþ
Z a

t

Z be

bi

K2
I

E0 dZ dx
� �

; ð23Þ

where t ¼ ðDe � DiÞ=2; the parameters be and bi denotes, respectively, the external and internal
half-width of a horizontal section measured at a depth x: They have geometric relations with the
depth variable x; i.e.,

be ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

e

4
�

De

2
� x

	 
2s
; bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

i

4
�

De

2
� x

	 
2s
: ð24a;bÞ

Substituting Eq. (20) into Eq. (23) and then the result into the definition equation for the local
flexibility, i.e., C ¼ @y=@M; we can obtain

CE0D3
e ¼

2048

pð1� g4Þ2

Z t

0

Z be

�be

þ
Z a

t

Z �bi

�be

þ
Z a

t

Z be

bi

	 

� f½1� 4ðZ=DeÞ

2	ðx0=DeÞF 02ðdZ=DeÞðdx=DeÞg; ð25Þ
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where g ¼ Di=De: Letting x ¼ x=De and y ¼ Z=De; we have

CE0D3
e ¼

1024

pð1� g4Þ2

Z t=De

0

Z ffiffiffiffiffiffiffiffi
x�x2

p
�

ffiffiffiffiffiffiffiffi
x�x2

p þ
Z a=De

t=De

Z �b

�
ffiffiffiffiffiffiffiffi
x�x2

p þ
Z a=De

t=De

Z ffiffiffiffiffiffiffiffi
x�x2

p
b

0
@

1
A

� fð1� 4y2Þð2x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4y2

p
� 1ÞF 02g dy dx; ð26Þ

in which b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � x2 � ð1� g2Þ=4

p
; and F 0 is a function of x0 (Eq. (12)), and x0 is expressed in

terms of x and y exactly as Eq. (17) above.
Eqs. (22) and (26) are the general integral form of the local flexibility induced by a sectional

crack. Explicit form is obtained firstly through employment of Gauss quadrature and then by the
least-squares fitting. The best-fitted explicit expressions for three different diameter ratios ð *a ¼
0:3; 0:5 and 0:7Þ are given in Eqs. (A.3)-(A.5) and the best-fitted curves are shown in Fig. 7.

5. Local flexibility due to a sectional crack in rectangular-hollow-sectional beams

5.1. Case 1—shallow open crack ½0papt	

Fig. 8 shows the shallow open crack, of which the penetration depth ‘a’ is contained within the
top solid-sectional region ½0papt	: ‘t’ is the wall thickness, which is constant all around. The
hollow section has an overall breadth ‘b0’ and height ‘h0’: The internal void’s breadth and height
are ‘bi’ and ‘hi’; respectively. Following the same procedures above, we can obtain the
dimensionless local flexibility coefficient below:

CE0h30 ¼
72prb

½rb � ðrb � 2rtÞð1� 2rtÞ
3	2

Z a=h0

0

xF2 dx; ð27Þ

where rb ¼ b0=h0; rt ¼ t=h0; and F is a function of x (Eq. (5)).
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5.2. Case 2—deeper open crack ½tpapðh � tÞ	

Fig. 9 shows the deeper open crack, of which the penetration depth ‘a’ goes into the middle
hollow-sectional region ½tpapðh � tÞ	: Using the same method shown above, we can obtain the
dimensionless local flexibility coefficient below:

CE0h30 ¼
72p

½rb � ðrb � 2rtÞð1� 2rtÞ
3	2

rb

Z rt

0

xF 2 dx þ 2rt

Z a=h0

rt

xF2 dx

( )
; ð28Þ

where rb ¼ b0=h0; rt ¼ t=h0; and F is a function of x (Eq. (5)).
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Eqs. (27) and (28) are the general integral form of the local flexibility induced by a sectional
crack. Explicit form is obtained firstly through employment of Gauss quadrature and then by the
least-squares fitting. The best-fitted explicit expressions for three different aspect ratios ðrt ¼
0:35; 0:25 and 0:15Þ of a square hollow section ðrb ¼ 1:0Þ are given in Eqs. (A.6)-(A.8) and the best-
fitted curves are shown in Fig. 10.

6. Vibration and stability analysis

A beam having one or more sectional cracks can be modelled as an assembly of sub-beam
segments interconnected by virtual springs, which are introduced in to simulate the effects of the
open cracks. The vibration/buckling modes of the cracked beam are C0 continuous at the
locations of crack, but higher order continuous at other compact sections. They can be well
represented by a kind of C0 Gibbs phenomenon free Fourier series (GPFFS) functions [28–34].
The deflection of the beam d at an arbitrary location ‘z’ and time ‘t’ can be expressed as

dðz; tÞ ¼
XR

m¼1

qmðtÞZmðzÞ ¼ ZðzÞqðtÞ; ð29Þ

where

ZðzÞ ¼ Z1ðzÞ Z2ðzÞ ? ZRðzÞ
� �

; ð30Þ

qðtÞ ¼ ½ q1ðtÞ q2ðtÞ ? qRðtÞ 	T; ð31Þ

in which ZmðzÞ’s are the assumed vibration/buckling modes of the beam; qmðtÞ are the
corresponding generalized co-ordinates for the beam.
Combining piece-wise cubic polynomials with the Fourier base function, we can obtain the final

form of the representation function, namely GPFFS function

ZmðzÞ ¼ %ZmðzÞ þ *ZmðzÞ: ð32Þ
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By choosing a proper piece-wise cubic polynomial *ZmðzÞ; we can force the function ZmðzÞ to
satisfy all the interior discontinuity conditions and any specific boundary conditions. Vibration
and stability equations can be obtained through energy formulations [22]:

Vibration equation:

ðK1 þ K2Þq ¼ o2Mq; ð33Þ

where

K1 ¼
XQ

i¼1

Z ziþ1

zi

EIðzÞZT;zzðzÞZ;zzðzÞ dz; ð34Þ

K2 ¼
XQ

j¼2

cj�1EIðzjÞ
� �

ZT;zzðzjÞZ;zzðzjÞ; ð35Þ

M ¼
Z l

0

rAðzÞZTðzÞZðzÞ dz: ð36Þ

Stability equation:

ðK1 þ K2Þq ¼ lKGq; ð37Þ

where

KG ¼
Z l

0

NðzÞZT
;zðzÞZ;zðzÞ dz: ð38Þ

7. Numerical examples

Example 1. Vibration of a square-hollow-sectional cantilever beam having a crack at the clamped
end.

Fig. 11 shows a square-hollow-sectional cantilever beam having a crack at the clamped end.
The geometrical parameters for the beam are: l ¼ 0:8 m; b0 ¼ h0 ¼ 0:02 m; rb ¼ 1:0; rt ¼ 0:25;
a=h0 ¼ 0:0B0:5: The material parameters are: E ¼ 210GPa; m ¼ 0:33; r ¼ 7800 kg=m3: The crack
is at a fixed location. Cases of various crack depths are studied and results are shown in Fig. 12.
The vertical axis in Fig. 12 stands for the natural frequency ratio between the cracked beam and
its corresponding intact (un-cracked) beam, i.e., the frequency reduction. The horizontal axis
stands for the relative depth of the crack ða=h0Þ:

Example 2. Vibration of a circular-hollow-sectional cantilever beam having a crack at the clamped
end.

Fig. 13 shows a hollow circular-hollow-sectional cantilever beam having a crack at the clamped
end. The geometrical parameters for the beam are: l ¼ 0:8 m; De ¼ 0:02 m; Di ¼ 0:01 m; a=De ¼
0:0B0:5: The material parameters are: E ¼ 210GPa; m ¼ 0:33; r ¼ 7800 kg=m3: The crack is at a
fixed location. Cases of various crack depths are studied and results are shown in Fig. 14. The
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vertical axis in Fig. 14 stands for the frequency reduction, while the horizontal axis stands for the
relative depth of the crack ða=DeÞ:

Example 3. Vibration of a circular-hollow-sectional cantilever beam with a crack of varying

location.
The same beam as in Example 2 is considered. The crack has a fixed depth ða ¼ 0:0075 mÞ but

its location varies ðzc1 ¼ 0:00120:78 mÞ: Results are shown in Fig. 15. The vertical axis in Fig. 15
stands for the frequency reduction, while the horizontal axis stands for the location of crack.

Example 4. Stability of a circular-hollow-sectional cantilever beam having a crack at various

locations.
The same beam as in Example 3 is considered. The crack has a fixed depth ða ¼ 0:0075 mÞ

but its location varies ðzc1 ¼ 0:00120:78mÞ: Results are shown in Fig. 16. The vertical axis in

ARTICLE IN PRESS

0.90

0.92

0.94

0.96

0.98

1.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
a/ho

ω
i/ ω

0i

1st frequency reduction
2nd frequency reduction
3rd frequency reduction

Fig. 12. Frequency reduction of a square-hollow-sectional cantilever beam having an open crack at the clamped end

ðrb ¼ 1:0; rt ¼ 0:25Þ:

l 

a 

δ(z, t) 

z 

bo 

ho

t 

t 

t t 

Fig. 11. A square-hollow-sectional cantilever beam having an open crack at the clamped end.
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Fig. 13. A circular-hollow-sectional cantilever beam having an open crack at the clamped end.
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Fig. 14. Frequency reduction of a circular-hollow-sectional cantilever beam having an open crack at the clamped end
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Fig. 15. Frequency reduction of a circular-hollow-sectional cantilever beam having an open crack at varying locations

ðDi=De ¼ 0:5Þ:
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Fig. 16 stands for the buckling-load reduction, while the horizontal axis stands for the location of
crack.

Example 5. Vibration of a circular-hollow-sectional cantilever beam having stiffening rings and three

open cracks.
Fig. 17 shows a circular-hollow-sectional cantilever beam having three stiffening rings and three

open cracks. The geometrical parameters for the beam are: l ¼ 0:66 m; lr ¼ 0:02 m; lb ¼ 0:2 m;
De ¼ 0:03m; Di ¼ 0:0225 m; DR ¼ 0:045m: The material parameters are: E ¼ 210GPa; m ¼ 0:33;
r ¼ 7800 kg=m3: The three cracks have the same depth, i.e., a1 ¼ a2 ¼ a3 ¼ 0:015m: The
second and third cracks are at different fixed locations, while the location of the first crack
varies ðzc1 ¼ 0:021mB0:219mÞ: Results are shown in Fig. 18. The vertical axis in Fig. 18 stands
for the natural frequency reduction, while the horizontal axis stands for the location of the first
crack.
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Fig. 16. Buckling-load reduction of a circular-hollow-sectional beam having an open crack at varying locations

ðDi=De ¼ 0:5Þ:
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Fig. 17. A circular-hollow-sectional cantilever beam having three stiffening rings and three open cracks.
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Example 6. Stability of a circular-hollow-sectional cantilever beam having stiffening rings and three

open cracks.
The same beam as in Example 5 is considered. It has the same three cracks. The second and

third cracks are at different fixed locations, while the location of the first crack varies ðzc1 ¼
0:02120:219mÞ: Results are shown in Fig. 19. The vertical axis in Fig. 19 stands for the buckling-
load reduction, while the horizontal axis stands for the location of the first crack.

8. Conclusions and future work

Local flexibility coefficients due to the presence of an open sectional crack in rectangular- or
circular-hollow-sectional beams are derived. The general formulae are in integral form. Explicit
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formulae are obtained through Gauss quadrature and least-squares fitting. The best-fitted curves
are also presented. The local flexibility coefficients are then employed for the vibration and
stability analysis of cracked beams having rectangular or circular hollow sections under the
assumption that the cracks are always open and the beam is in the range of linear elasticity. The
usefulness and simplicity of the flexibility coefficients in the analysis are demonstrated in
numerical examples. The authors will design and carry out some experiments to validate the
analytical results obtained in this paper.

Appendix A. Best-fitted formulas for the local flexibility coefficients

Case 1. Solid rectangular cross-sectional beam:

CE0bh2E e1=ð1�zÞð�0:2314� 10�4zþ 52:3790z2 � 130:2463z3

þ 308:4111z4 � 602:1761z5 þ 937:6805z6

� 1306:7397z7 þ 1398:7523z8 � 1059:6215z9

þ 388:1628z10Þ ðz ¼ a=h; 0pzp0:5; erroro0:038%Þ: ðA:1Þ

Case 2. Solid circular cross-sectional beam:

CE0D3E e1=ð1�zÞð0:1687� 10�3z0:4 � 0:9770� 10�2z0:8 þ 0:2382z1:2

� 3:2016z1:6 þ 25:5385z2 � 58:1428z2:4

þ 679:8828z2:8 � 1350:4090z3:2 þ 794:0302z3:6

� 11:3371z4Þ ðz ¼ a=D; 0pzp0:1; erroro0:045%Þ ðA:2aÞ

and

CE0D3E e1=ð1�zÞð5:4931z0:4 � 60:0706z0:8 þ 249:0679z1:2

� 437:5001z1:6 þ 172:6435z2 � 55:5990z2:4

þ 3036:1620z2:8 � 7991:3829z3:2 þ 7992:1873z3:6

� 2934:3483z4Þ ðz ¼ a=D; 0:1pzp0:5; erroro0:0064%Þ: ðA:2bÞ

Case 3. Hollow circular cross-sectional beam:

g ¼ Di=De ¼ 0:3;

CE0D3
eE e1=ð1�zÞð0:1588� 10�3z0:4 � 0:9274� 10�2z0:8 þ 0:2279z1:2

� 3:0843z1:6 þ 24:7144z2 � 53:2924z2:4

þ 673:6523z2:8 � 1340:2343z3:2 þ 773:0600z3:6

þ 3:9297z4Þ ðz ¼ a=De; 0pzp0:1; erroro0:04%Þ; ðA:3aÞ

ARTICLE IN PRESS

D.Y. Zheng, S.C. Fan / Journal of Sound and Vibration 267 (2003) 933–954 949



CE0D3
e Ee1=ð1�zÞð�1:5190z0:4 þ 48:0300z0:8 � 505:7346z1:2

þ 2710:4929z1:6 � 8489:3637z2 þ 16237:4386z2:4

� 17821:2615z2:8 þ 9429:8274z3:2 � 569:8074z3:6

� 1058:8774z4Þ ðz ¼ a=De; 0:1pzp0:35; erroro0:0009%Þ; ðA:3bÞ

CE0D3
eE e1=ð1�zÞð�7942:6668z0:4 þ 39626:3552z0:8 � 65868:8104z1:2

þ 39605:9964z1:6 � 14332:3830z2 � 26166:7493z2:4

þ 199643:4402z2:8 � 318149:0794z3:2 þ 187361:1532z3:6

� 33346:8571z4Þ ðz ¼ a=De; 0:35pzp0:5; erroro0:06%Þ ðA:3cÞ

g ¼ Di=De ¼ 0:5;

CE0D3
e Ee1=ð1�zÞð0:1790� 10�3z0:4 � 0:01045z0:8 þ 0:2567z1:2

� 3:4736z1:6 þ 27:8300z2 � 60:4683z2:4

þ 756:6548z2:8 � 1505:2487z3:2 þ 870:8037z3:6

þ 1:8475z4Þ ðz ¼ a=De; 0pzp0:1; erroro0:04%Þ; ðA:4aÞ

CE0D3
eE e1=ð1�zÞð�1:0060z0:4 þ 9:6107z0:8 � 29:6192z1:2

þ 16:3389z1:6 þ 42:8801z2 þ 218:8186z2:4

� 329:3538z2:8 � 190:9792z3:2 þ 554:7871z3:6

� 277:5391z4Þ ðz ¼ a=De; 0:1pzp0:25; erroro0:0002%Þ; ðA:4bÞ

CE0D3
eE e1=ð1�zÞð�2429:5612z0:4 þ 10105:0170z0:8 � 12608:8963z1:2

þ 23680:8521z1:6 � 63973:7077z2 � 29706:9774z2:4

þ 270762:9328z2:8 � 169834:8546z3:2 � 190849:3904z3:6

þ 171110:1644z4Þ ðz ¼ a=De; 0:25pzp0:35; erroro0:09%Þ; ðA:4cÞ

CE0D3
eE e1=ð1�zÞð�96:9750z0:4 þ 448:3050z0:8 � 615:4035z1:2

þ 33:1566z1:6 þ 644:3539z2 � 612:6326z2:4

þ 1007:3750z2:8 � 2437:5767z3:2 þ 2506:8430z3:6

� 866:6797z4Þ ðz ¼ a=De; 0:35pzp0:5; erroro0:09%Þ: ðA:4dÞ

g ¼ Di=De ¼ 0:7;

CE0D3
eE e1=ð1�zÞð0:2752� 10�3z0:4 � 0:01605z0:8 þ 0:3936z1:2

� 5:3200z1:6 þ 42:5900z2 � 93:0730z2:4

þ 1154:6563z2:8 � 2296:4230z3:2 þ 1330:8476z3:6

þ 0:4202z4Þ ðz ¼ a=De; 0pzp0:1; erroro0:04%Þ; ðA:5aÞ
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CE0D3
eE e1=ð1�zÞð�444:4192z0:4 � 527:5308z0:8 þ 34598:5310z1:2

� 137888:5662z1:6 � 31:0290z2 þ 851211:4274z2:4

� 734003:7416z2:8 � 3193126:772z3:2 þ 6889739:187z3:6

� 3992249:482z4Þ ðz ¼ a=De; 0:1pzp0:15; erroro0:007%Þ; ðA:5bÞ

CE0D3
eE e1=ð1�zÞð�2268:4084z0:4 þ 22777:3434z0:8 � 98437:9691z1:2

þ 248059:5618z1:6 � 439917:5520z2 þ 656597:2477z2:4

� 855011:6438z2:8 þ 825060:9584z3:2 � 474965:1588z3:6

þ 118270:8604z4Þ ðz ¼ a=De; 0:15pzp0:35; erroro0:2%Þ: ðA:5cÞ

Case 4. Hollow rectangular cross-sectional beam:

rt ¼ 0:35 ðrb ¼ 1:0Þ;

CE0h30E e1=ð1�zÞð0:9903� 10�5z0:4 þ 0:5643� 10�4z0:8 � 0:007191z1:2

þ 0:04106z1:6 þ 54:1775z2 � 14:4993z2:4

þ 67:7718z2:8 � 539:6241z3:2 þ 875:6370z3:6

� 454:6942z4Þ ðz ¼ a=h0; 0pzp0:25; erroro0:0002%Þ; ðA:6aÞ

CE0h30E e1=ð1�zÞð3:0292z0:4 � 16:5937z0:8 þ 22:5107z1:2

þ 12:4519z1:6 þ 47:5798z2 � 78:6711z2:4

� 52:7342z2:8 � 17:2254z3:2 þ 364:3971z3:6

� 298:8736z4Þ ðz ¼ a=h0; 0:25pzp0:35; erroro0:000007%Þ; ðA:6bÞ

CE0h30E e1=ð1�zÞð22:8246z0:4 � 73:3424z0:8 þ 47:0626z1:2

þ 86:2010z1:6 � 8:2983z2 � 65:6099z2:4

� 218:5020z2:8 þ 54:1675z3:2 þ 588:5319z3:6

� 449:3343z4Þ ðz ¼ a=h0; 0:35pzp0:5; erroro0:00002%Þ: ðA:6cÞ

rt ¼ 0:25 ðrb ¼ 1:0Þ;

CE0h30E e1=ð1�zÞð0:8844� 10�4z0:4 � 0:004477z0:8 þ 0:09720z1:2

� 1:2245z1:6 þ 69:6293z2 � 55:4973z2:4

þ 183:4556z2:8 � 784:0426z3:2 þ 1148:2809z3:6

� 576:1615z4Þ ðz ¼ a=h0; 0pzp0:15; erroro0:002%Þ; ðA:7aÞ
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CE0h30E e1=ð1�zÞð0:4835z0:4 � 3:0114z0:8 þ 2:6941z1:2

þ 15:9130z1:6 þ 34:2396z2 � 35:9424z2:4

þ 35:1120z2:8 � 229:0307z3:2 þ 425:3254z3:6

� 250:8735z4Þ ðz ¼ a=h0; 0:15pzp0:25; erroro0:00002%Þ; ðA:7bÞ

CE0h30E e1=ð1�zÞð�13:6117z0:4 þ 150:9723z0:8 � 400:6208z1:2

þ 123:1813z1:6 þ 1013:5706z2 � 1222:7133z2:4

� 465:1126z2:8 þ 1387:3873z3:2 � 411:1656z3:6

� 175:1998z4Þ ðz ¼ a=h0; 0:25pzp0:5; erroro0:0003%Þ: ðA:7cÞ

rt ¼ 0:15 ðrb ¼ 1:0Þ;

CE0h30E e1=ð1�zÞð0:9269� 10�4z0:4 � 0:005320z0:8 þ 0:1305z1:2

� 1:8137z1:6 þ 106:5995z2 � 91:1370z2:4

þ 308:2441z2:8 � 1260:5451z3:2 þ 1829:1508z3:6

� 917:6437z4Þ ðz ¼ a=h0; 0pzp0:1; erroro0:001%Þ; ðA:8aÞ

CE0h30E e1=ð1�zÞð�302:2690z0:4 � 360:1778z0:8 þ 23544:2601z1:2

� 93809:7198z1:6 � 4:3314z2 þ 579233:8955z2:4

� 499877:7083z2:8 � 2172413:395z3:2 þ 4688622:091z3:6

� 2717071:081z4Þ ðz ¼ a=h0; 0:1pzp0:15; erroro0:005%Þ; ðA:8bÞ

CE0h30E e1=ð1�zÞð22:2136z0:4 � 168:0020z0:8 þ 712:4735z1:2

� 1948:6712z1:6 þ 3794:3229z2 � 5694:8840z2:4

þ 7090:2229z2:8 � 6962:5050z3:2 þ 4469:4318z3:6

� 1327:0868z4Þ ðz ¼ a=h0; 0:15pzp0:5; erroro0:0003%Þ: ðA:8cÞ
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